Accuracy of Hidden Markov Models in Identifying Alterations in Movement Patterns during Biceps-Curl Weight-Lifting Exercise

André B. Peres, Mário C. Espada, Fernando J. Santos, Ricardo A.M. Robalo, Amândio A.P. Dias, Jesús Muñoz-Jiménez, Andrei Sancassani, Danilo A. Massini, Dalton M. Pessôa Filho

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

This paper presents a comparison of mathematical and cinematic motion analysis regarding the accuracy of the detection of alterations in the patterns of positional sequence during biceps-curl lifting exercise. Two different methods, one with and one without metric data from the environment, were used to identify the changes. Ten volunteers performed a standing biceps-curl exercise with additional loads. A smartphone recorded their movements in the sagittal plane, providing information on joints and barbell sequential position changes during each lift attempt. An analysis of variance revealed significant differences in joint position (p < 0.05) among executions with three different loads. Hidden Markov models were trained with data from the bi-dimensional coordinates of the joint positional sequence to identify meaningful alteration with load increment. Tests of agreement tests between the results provided by the models with the environmental measurements, as well as those from image coordinates, were performed. The results demonstrated that it is possible to efficiently detect changes in the patterns of positional sequence with and without the necessity of measurement and/or environmental control, reaching an agreement of 86% between each other, and 100% and 86% for each respective method to the results of ANOVA. The method developed in this study illustrates the viability of smartphone camera use for identifying positional adjustments due to the inability to control limbs in an adequate range of motion with increasing load during a lifting task.

Original languageEnglish
Article number573
JournalApplied Sciences (Switzerland)
Volume13
Issue number1
DOIs
Publication statusPublished - Jan 2023

Keywords

  • motor activity
  • pattern recognition
  • resistance training
  • theoretical models

Fingerprint

Dive into the research topics of 'Accuracy of Hidden Markov Models in Identifying Alterations in Movement Patterns during Biceps-Curl Weight-Lifting Exercise'. Together they form a unique fingerprint.

Cite this