Abstract
Osseodensification (OD) compacts trabecular bone during implant site preparation rather than removing it, potentially enhancing primary stability versus conventional drilling. This review critically appraised clinical and preclinical evidence for OD’s biological and biomechanical efficacy in implant dentistry. We conducted electronic searches in seven databases (PubMed, Scopus, Web of Science, ScienceDirect, SciELO, LILACS, DOAJ) for the period January 2014 to March 2024. Studies comparing osseodensification with conventional drilling in clinical and large-animal models were included. Primary outcomes were insertion torque, implant stability quotient (ISQ), bone-to-implant contact (BIC), bone area fraction occupancy (BAFO), and complications. Of 75 retrieved records, 38 studies (27 clinical, 11 preclinical) provided analysable data. Based on descriptive averages from the narrative synthesis, osseodensification increased mean insertion torque by around 45% (range 32–59%) and initial ISQ by 3–10 units compared with conventional drilling. These gains permitted immediate loading in 78% of cases and shortened operating time (mean reduction 15–20 min). Animal studies demonstrated 12–28% higher BIC and increased peri-implant bone density at 4–12 weeks. No serious adverse events were recorded. Postoperative morbidity was similar between techniques. The collated evidence indicates that osseodensification significantly improves primary stability and may accelerate healing protocols, particularly in low-density (Misch D3–D4) bone. However, the predominance of short-term data and heterogeneity in surgical parameters limit definitive conclusions. Long-term randomised controlled trials with standardised protocols are needed before universal clinical recommendations can be established.
| Original language | English |
|---|---|
| Article number | 461 |
| Journal | Dentistry Journal |
| Volume | 13 |
| Issue number | 10 |
| DOIs | |
| Publication status | Published - Oct 2025 |
Keywords
- bone densification
- dental implants
- immediate loading
- osseodensification
- posterior maxilla
- primary stability