TY - JOUR
T1 - Determination of trace levels of triazines in corn matrices by bar adsorptive microextraction with a molecularly imprinted polymer
AU - Andrade, Felipe Nascimento
AU - Ide, Alessandra Honjo
AU - Neng, Nuno Da Rosa
AU - Lanças, Fernando Mauro
AU - Nogueira, José Manuel Florêncio
N1 - Publisher Copyright:
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - This manuscript addresses the determination of triazines (ametryn, atrazine, simazine, and terbutryn) in corn matrices using bar adsorptive microextraction coated with a selective molecularly imprinted polymer phase following microliquid desorption and high-performance liquid chromatography with diode array detection. The molecularly imprinted polymer was synthesized using atrazine as a template and methacrylic acid as a functional monomer. Assays performed in 25 mL of ultrapure water samples spiked at 8.0 μg/L yielded 80-120 % recoveries under the evaluated experimental conditions. The method showed an accuracy (0.2 < bias < 17.9%), precision (relative standard deviation <17.4%), convenient detection (0.2 μg/L), and quantification (0.7 μg/L) limits, as well as linear dynamic ranges (0.8-24.0 μg/L) with remarkable determination coefficients (R2 > 0.9926). The proposed analytical method was applied to monitor triazines in three types of corn matrices using the standard addition methodology. Experiments performed in corn samples spiked with triazines at the trace level (8.0 μg/kg of each analyte) gave rise to recoveries (81.0-119.4%) with good reproducibility and robustness. The proposed methodology is also easy to implement and showed to be a good analytical alternative to monitor triazines in complex matrices, when compared with other sorption-based microextraction techniques.
AB - This manuscript addresses the determination of triazines (ametryn, atrazine, simazine, and terbutryn) in corn matrices using bar adsorptive microextraction coated with a selective molecularly imprinted polymer phase following microliquid desorption and high-performance liquid chromatography with diode array detection. The molecularly imprinted polymer was synthesized using atrazine as a template and methacrylic acid as a functional monomer. Assays performed in 25 mL of ultrapure water samples spiked at 8.0 μg/L yielded 80-120 % recoveries under the evaluated experimental conditions. The method showed an accuracy (0.2 < bias < 17.9%), precision (relative standard deviation <17.4%), convenient detection (0.2 μg/L), and quantification (0.7 μg/L) limits, as well as linear dynamic ranges (0.8-24.0 μg/L) with remarkable determination coefficients (R2 > 0.9926). The proposed analytical method was applied to monitor triazines in three types of corn matrices using the standard addition methodology. Experiments performed in corn samples spiked with triazines at the trace level (8.0 μg/kg of each analyte) gave rise to recoveries (81.0-119.4%) with good reproducibility and robustness. The proposed methodology is also easy to implement and showed to be a good analytical alternative to monitor triazines in complex matrices, when compared with other sorption-based microextraction techniques.
KW - Bar adsorptive microextraction
KW - Corn
KW - Floating sampling technology
KW - Molecularly imprinted polymers
KW - Triazines
UR - http://www.scopus.com/inward/record.url?scp=84958972968&partnerID=8YFLogxK
U2 - 10.1002/jssc.201501101
DO - 10.1002/jssc.201501101
M3 - Article
C2 - 26632142
AN - SCOPUS:84958972968
SN - 1615-9306
VL - 39
SP - 756
EP - 761
JO - Journal of Separation Science
JF - Journal of Separation Science
IS - 4
ER -