Abstract
Embryonic stem (BS) cells have been shown to differentiate in vitro into a wide variety of cell types having significant potential for tissue regeneration. Therefore, the operational conditions for the ex vivo expansion and differentiation should be optimized for large-scale cultures. The expansion of mouse ES cells has been evaluated in static culture. However, in this system, culture parameters are difficult to monitor and scaling-up becomes time consuming. The use of stirred bioreactors facilitates the expansion of cells under controlled conditions but, for anchorage-dependent cells, a proper support is necessary. Cytodex-3, a microporous microcarrier made up of a dextran matrix with a collagen layer at the surface, was tested for its ability to support the expansion of the mouse S25 ES cell line in spinner flasks. The effect of inocula and microcarrier concentration on cell growth and metabolism were analyzed. Typically, after seeding, the cells exhibited a growth curve consisting of a short death or lag phase followed by an exponential phase leading to the maximum cell density of 2.5-3.9 × 106 cells/mL. Improved expansion was achieved using an inoculum of 5 × 104 cells/mL and a microcarrier concentration of 0.5 mg/mL. Medium replacement allowed the supply of the nutrients and the removal of waste products inhibiting cell growth, leading to the maintenance of the cultures in steady state for several days. These conditions favored the preservation of the S25 cells pluripotent state, as assessed by quantitative real-time PCR and immunostaining analysis.
Original language | English |
---|---|
Pages (from-to) | 1211-1221 |
Number of pages | 11 |
Journal | Biotechnology and Bioengineering |
Volume | 96 |
Issue number | 6 |
DOIs | |
Publication status | Published - 15 Apr 2007 |
Externally published | Yes |
Keywords
- Cytodex-3
- Embryonic stem cells
- Expansion
- Scale-up
- Spinner flasks