TY - JOUR
T1 - Synthesis of glutathione as a central aspect of PAH toxicity in liver cells
T2 - A comparison between phenanthrene, Benzo[b]Fluoranthene and their mixtures
AU - Branco, Vasco
AU - Matos, Beatriz
AU - Mourato, Carolina
AU - Diniz, Mário
AU - Carvalho, Cristina
AU - Martins, Marta
N1 - Publisher Copyright:
© 2020 The Authors
PY - 2021/1/15
Y1 - 2021/1/15
N2 - Polycyclic Aromatic Hydrocarbons (PAH) are a class of organic pollutants normally found as mixtures with effects often hard to predict, which poses a major challenge for risk assessment. In this study, we address the effects of Phenanthrene (Phe), benzo[b]fluoranthene (B[b]F) and their mixtures (2 Phe:1 B[b]F; 1 Phe: 1 B[b]F; 1 Phe: 2 B[b]F) over glutathione (GSH) synthesis and function in HepG2 cells. We analyzed the effects on cellular viability, ROS production, glutathione (GSH) levels, protein-S-glutathionylation (PSSG), the activity of glutathione peroxidase (GPx), glutathione-S-transferases (GST) and glutathione reductase (GR). Transcript (mRNA) levels of glutathione synthesis enzymes - glutathione cysteine ligase catalytical (GCLC) and modifying (GCLM) sub-units and glutathione synthetase (GS) – and Nrf2 translocation to the nucleus were analyzed. Phe showed a higher cytotoxicity (IC50 = 130 µM after 24 h) than B[b]F related to a higher ROS production (up-to 50% for Phe). In agreement, GSH levels were significantly increased (up-to 3-fold) by B[b]F and were accompanied by an increase in the levels of PSSG, which is a mechanism that protect proteins from oxidative damage. The upregulation of GSH was the consequence of Nrf2 signaling activation and increased levels of GCLC, GCLM and GS mRNA observed after exposure to B[b]F, but not during exposure to Phe. Most interestingly, all mixtures showed higher cytotoxicity than individual compounds, but intriguingly it was the 1 Phe: 1B[b]F mixture showing the highest cytotoxicity and ROS production. GSH levels were not significantly upregulated not even in the mixture enriched in B[b]F. These results point to the role of GSH as a central modulator of PAH toxicity and demonstrate the idiosyncratic behavior of PAH mixtures even when considering only two compounds in varying ratios.
AB - Polycyclic Aromatic Hydrocarbons (PAH) are a class of organic pollutants normally found as mixtures with effects often hard to predict, which poses a major challenge for risk assessment. In this study, we address the effects of Phenanthrene (Phe), benzo[b]fluoranthene (B[b]F) and their mixtures (2 Phe:1 B[b]F; 1 Phe: 1 B[b]F; 1 Phe: 2 B[b]F) over glutathione (GSH) synthesis and function in HepG2 cells. We analyzed the effects on cellular viability, ROS production, glutathione (GSH) levels, protein-S-glutathionylation (PSSG), the activity of glutathione peroxidase (GPx), glutathione-S-transferases (GST) and glutathione reductase (GR). Transcript (mRNA) levels of glutathione synthesis enzymes - glutathione cysteine ligase catalytical (GCLC) and modifying (GCLM) sub-units and glutathione synthetase (GS) – and Nrf2 translocation to the nucleus were analyzed. Phe showed a higher cytotoxicity (IC50 = 130 µM after 24 h) than B[b]F related to a higher ROS production (up-to 50% for Phe). In agreement, GSH levels were significantly increased (up-to 3-fold) by B[b]F and were accompanied by an increase in the levels of PSSG, which is a mechanism that protect proteins from oxidative damage. The upregulation of GSH was the consequence of Nrf2 signaling activation and increased levels of GCLC, GCLM and GS mRNA observed after exposure to B[b]F, but not during exposure to Phe. Most interestingly, all mixtures showed higher cytotoxicity than individual compounds, but intriguingly it was the 1 Phe: 1B[b]F mixture showing the highest cytotoxicity and ROS production. GSH levels were not significantly upregulated not even in the mixture enriched in B[b]F. These results point to the role of GSH as a central modulator of PAH toxicity and demonstrate the idiosyncratic behavior of PAH mixtures even when considering only two compounds in varying ratios.
KW - Benzo[b]Fluoranthene
KW - Glutathione
KW - Mixtures
KW - Nrf2
KW - Phenanthrene
KW - Polycyclic Aromatic Hydrocarbons
UR - http://www.scopus.com/inward/record.url?scp=85096158384&partnerID=8YFLogxK
U2 - 10.1016/j.ecoenv.2020.111637
DO - 10.1016/j.ecoenv.2020.111637
M3 - Article
C2 - 33396157
AN - SCOPUS:85096158384
SN - 0147-6513
VL - 208
JO - Ecotoxicology and Environmental Safety
JF - Ecotoxicology and Environmental Safety
M1 - 111637
ER -