TY - JOUR
T1 - Accidental father-to-son HIV-1 transmission during the seroconversion period
AU - Ezeonwumelu, Ifeanyi
AU - Bártolo, Inês
AU - Martin, Francisco
AU - Abecasis, Ana
AU - Campos, Teresa
AU - Romero-Severson, Ethan O.
AU - Leitner, Thomas
AU - Taveira, Nuno
N1 - Publisher Copyright:
© Copyright 2018, Mary Ann Liebert, Inc., publishers.
PY - 2018/10
Y1 - 2018/10
N2 - A 4-year-old child born to an HIV-1 seronegative mother was diagnosed with HIV-1, the main risk factor being transmission from the child's father who was seroconverting at the time of the child's birth. In the context of a forensic investigation, we aimed to identify the source of infection of the child and date of the transmission event. Samples were collected from the father and child at two time points about 4 years after the child's birth. Partial segments of three HIV-1 genes (gag, pol, and env) were sequenced and maximum likelihood (ML) and Bayesian methods were used to determine direction and estimate date of transmission. Neutralizing antibodies were determined using a single cycle assay. Bayesian trees displayed a paraphyletic-monophyletic topology in all three genomic regions, with the father's host label at the root, which is consistent with father-to-son transmission. ML trees found similar topologies in gag and pol and a monophyletic-monophyletic topology in env. Analysis of the time of the most recent common ancestor of each HIV-1 gene population indicated that the child was infected shortly after the father. Consistent with the infection history, both father and son developed broad and potent HIV-specific neutralizing antibody responses. In conclusion, the direction of transmission implicated the father as the source of transmission. Transmission occurred during the seroconversion period when the father was unaware of the infection and was likely accidental. This case shows how genetic, phylogenetic, and serological data can contribute for the forensic investigation of HIV transmission.
AB - A 4-year-old child born to an HIV-1 seronegative mother was diagnosed with HIV-1, the main risk factor being transmission from the child's father who was seroconverting at the time of the child's birth. In the context of a forensic investigation, we aimed to identify the source of infection of the child and date of the transmission event. Samples were collected from the father and child at two time points about 4 years after the child's birth. Partial segments of three HIV-1 genes (gag, pol, and env) were sequenced and maximum likelihood (ML) and Bayesian methods were used to determine direction and estimate date of transmission. Neutralizing antibodies were determined using a single cycle assay. Bayesian trees displayed a paraphyletic-monophyletic topology in all three genomic regions, with the father's host label at the root, which is consistent with father-to-son transmission. ML trees found similar topologies in gag and pol and a monophyletic-monophyletic topology in env. Analysis of the time of the most recent common ancestor of each HIV-1 gene population indicated that the child was infected shortly after the father. Consistent with the infection history, both father and son developed broad and potent HIV-specific neutralizing antibody responses. In conclusion, the direction of transmission implicated the father as the source of transmission. Transmission occurred during the seroconversion period when the father was unaware of the infection and was likely accidental. This case shows how genetic, phylogenetic, and serological data can contribute for the forensic investigation of HIV transmission.
KW - HIV father-to-son transmission
KW - forensic investigation of HIV transmission
KW - neutralizing antibodies
KW - phylogenetic analysis
UR - http://www.scopus.com/inward/record.url?scp=85055074618&partnerID=8YFLogxK
U2 - 10.1089/aid.2018.0060
DO - 10.1089/aid.2018.0060
M3 - Article
C2 - 30073842
AN - SCOPUS:85055074618
SN - 0889-2229
VL - 34
SP - 857
EP - 862
JO - AIDS Research and Human Retroviruses
JF - AIDS Research and Human Retroviruses
IS - 10
ER -