TY - JOUR
T1 - Bone marrow-derived endothelial progenitors expressing delta-like 4 (Dll4) regulate tumor angiogenesis
AU - Real, Carla
AU - Remédio, Leonor
AU - Caiado, Francisco
AU - Igreja, Cátia
AU - Borges, Cristina
AU - Trindade, Alexandre
AU - Pinto-do-Ó, Perpétua
AU - Yagita, Hideo
AU - Duarte, Antonio
AU - Dias, Sérgio
PY - 2011
Y1 - 2011
N2 - Neo-blood vessel growth (angiogenesis), which may involve the activation of pre-existing endothelial cells (EC) and/or the recruitment of bone marrow-derived vascular precursor cells (BM-VPC), is essential for tumor growth. Molecularly, besides the well established roles for Vascular endothelial growth factor (VEGF), recent findings show the Notch signalling pathway, in particular the ligand Delta-like 4 (Dll4), is also essential for adequate tumor angiogenesis; Dll4 inhibition results in impaired, non-functional, angiogenesis and reduced tumor growth. However, the role of BM-VPC in the setting of Notch pathway modulation was not addressed and is the subject of the present report. Here we show that SDF-1 and VEGF, which are produced by tumors, increase Dll4 expression on recruited BM-VPC. Mechanistically, BM-VPC activated, in a Dll4-dependent manner, a transcriptional program on mature EC suggestive of EC activation and stabilization. BM-VPC induced ICAM-2 and Fibronectin expression on EC, an effect that was blocked by a Dll4-specific neutralizing antibody. In vivo, transplantation of BM-VPC with decreased Dll4 into tumor-bearing mice resulted in the formation of microvessels with decreased pericyte coverage and reduced fibronectin expression. Consequently, transplantation of BM-VPC with decreased Dll4 resulted in impaired tumor angiogenesis, increased tumor hypoxia and apoptosis, and decreased tumor growth. Taken together, our data suggests that Dll4 expression by BM-VPC affects their communication with tumor vessel endothelial cells, thereby modulating tumor angiogenesis by affecting vascular stability.
AB - Neo-blood vessel growth (angiogenesis), which may involve the activation of pre-existing endothelial cells (EC) and/or the recruitment of bone marrow-derived vascular precursor cells (BM-VPC), is essential for tumor growth. Molecularly, besides the well established roles for Vascular endothelial growth factor (VEGF), recent findings show the Notch signalling pathway, in particular the ligand Delta-like 4 (Dll4), is also essential for adequate tumor angiogenesis; Dll4 inhibition results in impaired, non-functional, angiogenesis and reduced tumor growth. However, the role of BM-VPC in the setting of Notch pathway modulation was not addressed and is the subject of the present report. Here we show that SDF-1 and VEGF, which are produced by tumors, increase Dll4 expression on recruited BM-VPC. Mechanistically, BM-VPC activated, in a Dll4-dependent manner, a transcriptional program on mature EC suggestive of EC activation and stabilization. BM-VPC induced ICAM-2 and Fibronectin expression on EC, an effect that was blocked by a Dll4-specific neutralizing antibody. In vivo, transplantation of BM-VPC with decreased Dll4 into tumor-bearing mice resulted in the formation of microvessels with decreased pericyte coverage and reduced fibronectin expression. Consequently, transplantation of BM-VPC with decreased Dll4 resulted in impaired tumor angiogenesis, increased tumor hypoxia and apoptosis, and decreased tumor growth. Taken together, our data suggests that Dll4 expression by BM-VPC affects their communication with tumor vessel endothelial cells, thereby modulating tumor angiogenesis by affecting vascular stability.
UR - http://www.scopus.com/inward/record.url?scp=79953685607&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0018323
DO - 10.1371/journal.pone.0018323
M3 - Article
C2 - 21483741
AN - SCOPUS:79953685607
SN - 1932-6203
VL - 6
JO - PLoS ONE
JF - PLoS ONE
IS - 4
M1 - e18323
ER -