TY - JOUR
T1 - Exploring Cerebrospinal Fluid IgG N-Glycosylation as Potential Biomarker for Amyotrophic Lateral Sclerosis
AU - Costa, Julia
AU - Streich, Linda
AU - Pinto, Susana
AU - Pronto-Laborinho, Ana
AU - Nimtz, Manfred
AU - Conradt, Harald S.
AU - de Carvalho, Mamede
N1 - Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/8/15
Y1 - 2019/8/15
N2 - Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which the existing candidate biomarkers (neurofilaments) have low specificity. Changes in blood IgG N-glycosylation have been observed in several diseases, including ALS, whereas cerebrospinal fluid (CSF) IgG has been less studied. Here, we characterized N-glycans of CSF IgG from ALS patients in comparison with a control group of other neurological diseases. Cerebrospinal fluid was collected from patients with ALS (n = 26) and other neurological diseases (n = 10). N-Glycans were released from CSF purified IgG with peptide N-glycosidase F, labeled with 2-aminobenzamide and analyzed by NP-HPLC chromatography in combination with exoglycosidase digestion and MALDI-TOF mass spectrometry. The N-glycosylation profile of ALS CSF IgG consisted of diantennary N-glycans predominantly with proximal fucose and some bisecting GlcNAc; agalacto-, mono-, and digalactosylated as well as α2,6-sialylated structures were detected. Differences between ALS and control patients were observed; most relevant was the increase in ALS CSF IgG of the level of galactosylated structures defined here as Gal-index (median 46.87 and 40.50% for ALS and controls, respectively; p = 0.006). The predictive value of the Gal-index (AUC = 0.792, p = 0.007) considering ROC analysis had potential utility as a diagnostic test for ALS and was comparable to that of phosphoneurofilament heavy chain (AUC = 0.777, p = 0.011), which was used as benchmark marker for our group of patients. The results provide the basis to further explore the potential of IgG N-glycan galactosylation as biomarker for ALS by using larger cohorts of patients and controls.
AB - Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which the existing candidate biomarkers (neurofilaments) have low specificity. Changes in blood IgG N-glycosylation have been observed in several diseases, including ALS, whereas cerebrospinal fluid (CSF) IgG has been less studied. Here, we characterized N-glycans of CSF IgG from ALS patients in comparison with a control group of other neurological diseases. Cerebrospinal fluid was collected from patients with ALS (n = 26) and other neurological diseases (n = 10). N-Glycans were released from CSF purified IgG with peptide N-glycosidase F, labeled with 2-aminobenzamide and analyzed by NP-HPLC chromatography in combination with exoglycosidase digestion and MALDI-TOF mass spectrometry. The N-glycosylation profile of ALS CSF IgG consisted of diantennary N-glycans predominantly with proximal fucose and some bisecting GlcNAc; agalacto-, mono-, and digalactosylated as well as α2,6-sialylated structures were detected. Differences between ALS and control patients were observed; most relevant was the increase in ALS CSF IgG of the level of galactosylated structures defined here as Gal-index (median 46.87 and 40.50% for ALS and controls, respectively; p = 0.006). The predictive value of the Gal-index (AUC = 0.792, p = 0.007) considering ROC analysis had potential utility as a diagnostic test for ALS and was comparable to that of phosphoneurofilament heavy chain (AUC = 0.777, p = 0.011), which was used as benchmark marker for our group of patients. The results provide the basis to further explore the potential of IgG N-glycan galactosylation as biomarker for ALS by using larger cohorts of patients and controls.
KW - Amyotrophic lateral sclerosis
KW - Biomarker
KW - Cerebrospinal fluid
KW - Glycoproteins
KW - Immunoglobulin G
KW - N-Glycosylation
UR - http://www.scopus.com/inward/record.url?scp=85060686357&partnerID=8YFLogxK
U2 - 10.1007/s12035-019-1482-9
DO - 10.1007/s12035-019-1482-9
M3 - Article
C2 - 30674035
AN - SCOPUS:85060686357
SN - 0893-7648
VL - 56
SP - 5729
EP - 5739
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 8
ER -