Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation

Liana Shvachiy, Vera Geraldes, Ângela Amaro-Leal, Isabel Rocha

Resultado de pesquisa: ???type-name??????researchoutput.researchoutputtypes.contributiontojournal.article???revisão de pares

37 Citações (Scopus)

Resumo

Background: Exposures to lead (Pb) during developmental phases can alter the normal course of development, with lifelong health consequences. Permanent Pb exposure leads to behavioral changes, cognitive impairment, sympathoexcitation, tachycardia, hypertension and autonomic dysfunction. However, the effects of an intermittent lead exposure are not yet studied. This pattern of exposure has been recently increasing due to migrations, implementation of school exchange programs and/or residential changes. Objective: To determine and compare lead effects on mammal's behavior and physiology, using a rat model of intermittent and permanent Pb exposures. Methods: Fetuses were intermittently (PbI) or permanently (PbP) exposed to water containing lead acetate (0.2% w/v) throughout life until adulthood (28 weeks of age). A control group (CTL) without any exposure to lead was also used. Anxiety was assessed by elevated plus maze (EPM) and locomotor activity and exploration by open field test (OFT). Blood pressure (BP), electrocardiogram (ECG), heart rate (HR), respiratory frequency (RF), sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles were evaluated. Immunohistochemistry protocol for the assessment of neuroinflammation, neuronal loss (NeuN), gliosis and synaptic alterations (Iba-1, GFAP, Syn), were performed at the hippocampus. One-way ANOVA with Tukey's multiple comparison between means were used (significance p < 0.05) for statistical analysis. Results: The intermittent lead exposure produced a significant increase in diastolic and mean BP values, concomitant with a tendency to sympathetic overactivity (estimated by increased low-frequency power) and without significant changes in systolic BP, HR and RF. A chemoreceptor hypersensitivity and a baroreflex impairment were also observed, however, less pronounced when compared to the permanent exposure. Regarding behavioral changes, both lead exposure profiles showed an anxiety-like behavior without changes in locomotor and exploratory activity. Increase in GFAP and Iba-1 positive cells, without changes in NeuN positive cells were found in both exposed groups. Syn staining suffered a significant decrease in PbI group and a significant increase in PbP group. Conclusion: This study is the first to show that developmental Pb exposure since fetal period can cause lasting impairments in physiological parameters. The intermittent lead exposure causes adverse health effects, i.e, hypertension, increased respiratory frequency and chemoreflex sensitivity, baroreflex impairment, anxiety, decreased synaptic activity, neuroinflammation and reactive gliosis, in some ways similar to a permanent exposure, however some are lower-grade, due to the shorter duration of exposure. This study brings new insights on the environmental factors that influence autonomic and cardiovascular systems during development, which can help in creating public policy strategies to prevent and control the adverse effects of Pb toxicity.

Idioma original???core.languages.en_GB???
Páginas (de-até)307-319
Número de páginas13
RevistaNeuroToxicology
Volume69
DOIs
Estado da publicação???researchoutput.status.published??? - dez. 2018
Publicado externamenteSim

Impressão digital

Mergulhe nos tópicos de investigação de “Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation“. Em conjunto formam uma impressão digital única.

Citar isto