TY - JOUR
T1 - Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides
AU - Couto, Nazaré
AU - Ferreira, Ana Rita
AU - Guedes, Paula
AU - Mateus, Eduardo
AU - Ribeiro, Alexandra B.
N1 - Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Pharmaceuticals and personal care products (PPCPs) have attracted increasing concern during the last decade because of their widespread uses and continuous release to the aquatic environment. This work aimed to study the distribution of caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS) when they arrive in salt marsh areas and to assess their remediation potential by two different species of salt marsh plants: Spartina maritima and Halimione portulacoides. Experiments were carried out in the laboratory either in hydroponics (sediment elutriate) or in sediment soaked in elutriate, for 10 days. Controls without plants were also carried out. CAF, MBPh, and TCS were added to the media. In unvegetated sediment soaked in elutriate, CAF was mainly in the liquid phase (83%), whereas MBPh and TCS were in the solid phase (90% and 56%, respectively); the highest remediation was achieved for TCS (40%) and mainly attributed to bioremediation. The presence of plants in sediment soaked in elutriate-enhanced PPCPs remediation, decreasing CAF and TCS levels between approximately 20-30% and MBPh by 40%. Plant uptake, adsorption to plant roots/sediments, and bio/rhizoremediation are strong hypothesis to explain the decrease of contaminants either in water or sediment fractions, according to PPCPs characteristics.
AB - Pharmaceuticals and personal care products (PPCPs) have attracted increasing concern during the last decade because of their widespread uses and continuous release to the aquatic environment. This work aimed to study the distribution of caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS) when they arrive in salt marsh areas and to assess their remediation potential by two different species of salt marsh plants: Spartina maritima and Halimione portulacoides. Experiments were carried out in the laboratory either in hydroponics (sediment elutriate) or in sediment soaked in elutriate, for 10 days. Controls without plants were also carried out. CAF, MBPh, and TCS were added to the media. In unvegetated sediment soaked in elutriate, CAF was mainly in the liquid phase (83%), whereas MBPh and TCS were in the solid phase (90% and 56%, respectively); the highest remediation was achieved for TCS (40%) and mainly attributed to bioremediation. The presence of plants in sediment soaked in elutriate-enhanced PPCPs remediation, decreasing CAF and TCS levels between approximately 20-30% and MBPh by 40%. Plant uptake, adsorption to plant roots/sediments, and bio/rhizoremediation are strong hypothesis to explain the decrease of contaminants either in water or sediment fractions, according to PPCPs characteristics.
KW - Pharmaceutical and personal care compounds
KW - Phytoremediation
KW - Salt marsh area
KW - Sediment
KW - Water
UR - http://www.scopus.com/inward/record.url?scp=85053478358&partnerID=8YFLogxK
U2 - 10.1007/s11356-018-3042-7
DO - 10.1007/s11356-018-3042-7
M3 - Article
C2 - 30191527
AN - SCOPUS:85053478358
SN - 0944-1344
VL - 25
SP - 35928
EP - 35935
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 36
ER -